Enter a problem...
Finite Math Examples
Step 1
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Step 1.2.1
Rewrite the equation as .
Step 1.2.2
Factor using the rational roots test.
Step 1.2.2.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 1.2.2.2
Find every combination of . These are the possible roots of the polynomial function.
Step 1.2.2.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 1.2.2.3.1
Substitute into the polynomial.
Step 1.2.2.3.2
Raise to the power of .
Step 1.2.2.3.3
Raise to the power of .
Step 1.2.2.3.4
Multiply by .
Step 1.2.2.3.5
Add and .
Step 1.2.2.3.6
Multiply by .
Step 1.2.2.3.7
Add and .
Step 1.2.2.3.8
Subtract from .
Step 1.2.2.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 1.2.2.5
Divide by .
Step 1.2.2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | + | - | - |
Step 1.2.2.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | - | - |
Step 1.2.2.5.3
Multiply the new quotient term by the divisor.
+ | + | - | - | ||||||||
+ | + |
Step 1.2.2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | - | - | ||||||||
- | - |
Step 1.2.2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | - | - | ||||||||
- | - | ||||||||||
+ |
Step 1.2.2.5.6
Pull the next terms from the original dividend down into the current dividend.
+ | + | - | - | ||||||||
- | - | ||||||||||
+ | - |
Step 1.2.2.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
+ | |||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
+ | - |
Step 1.2.2.5.8
Multiply the new quotient term by the divisor.
+ | |||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
+ | - | ||||||||||
+ | + |
Step 1.2.2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
+ | |||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | - |
Step 1.2.2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | |||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | - | ||||||||||
- |
Step 1.2.2.5.11
Pull the next terms from the original dividend down into the current dividend.
+ | |||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | - | ||||||||||
- | - |
Step 1.2.2.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
+ | - | ||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | - | ||||||||||
- | - |
Step 1.2.2.5.13
Multiply the new quotient term by the divisor.
+ | - | ||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
- | - |
Step 1.2.2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
+ | - | ||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + |
Step 1.2.2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | - | ||||||||||
+ | + | - | - | ||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
Step 1.2.2.5.16
Since the remander is , the final answer is the quotient.
Step 1.2.2.6
Write as a set of factors.
Step 1.2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 1.2.4
Set equal to and solve for .
Step 1.2.4.1
Set equal to .
Step 1.2.4.2
Subtract from both sides of the equation.
Step 1.2.5
Set equal to and solve for .
Step 1.2.5.1
Set equal to .
Step 1.2.5.2
Solve for .
Step 1.2.5.2.1
Use the quadratic formula to find the solutions.
Step 1.2.5.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 1.2.5.2.3
Simplify.
Step 1.2.5.2.3.1
Simplify the numerator.
Step 1.2.5.2.3.1.1
Raise to the power of .
Step 1.2.5.2.3.1.2
Multiply .
Step 1.2.5.2.3.1.2.1
Multiply by .
Step 1.2.5.2.3.1.2.2
Multiply by .
Step 1.2.5.2.3.1.3
Add and .
Step 1.2.5.2.3.1.4
Rewrite as .
Step 1.2.5.2.3.1.4.1
Factor out of .
Step 1.2.5.2.3.1.4.2
Rewrite as .
Step 1.2.5.2.3.1.5
Pull terms out from under the radical.
Step 1.2.5.2.3.2
Multiply by .
Step 1.2.5.2.3.3
Simplify .
Step 1.2.5.2.4
Simplify the expression to solve for the portion of the .
Step 1.2.5.2.4.1
Simplify the numerator.
Step 1.2.5.2.4.1.1
Raise to the power of .
Step 1.2.5.2.4.1.2
Multiply .
Step 1.2.5.2.4.1.2.1
Multiply by .
Step 1.2.5.2.4.1.2.2
Multiply by .
Step 1.2.5.2.4.1.3
Add and .
Step 1.2.5.2.4.1.4
Rewrite as .
Step 1.2.5.2.4.1.4.1
Factor out of .
Step 1.2.5.2.4.1.4.2
Rewrite as .
Step 1.2.5.2.4.1.5
Pull terms out from under the radical.
Step 1.2.5.2.4.2
Multiply by .
Step 1.2.5.2.4.3
Simplify .
Step 1.2.5.2.4.4
Change the to .
Step 1.2.5.2.5
Simplify the expression to solve for the portion of the .
Step 1.2.5.2.5.1
Simplify the numerator.
Step 1.2.5.2.5.1.1
Raise to the power of .
Step 1.2.5.2.5.1.2
Multiply .
Step 1.2.5.2.5.1.2.1
Multiply by .
Step 1.2.5.2.5.1.2.2
Multiply by .
Step 1.2.5.2.5.1.3
Add and .
Step 1.2.5.2.5.1.4
Rewrite as .
Step 1.2.5.2.5.1.4.1
Factor out of .
Step 1.2.5.2.5.1.4.2
Rewrite as .
Step 1.2.5.2.5.1.5
Pull terms out from under the radical.
Step 1.2.5.2.5.2
Multiply by .
Step 1.2.5.2.5.3
Simplify .
Step 1.2.5.2.5.4
Change the to .
Step 1.2.5.2.6
The final answer is the combination of both solutions.
Step 1.2.6
The final solution is all the values that make true.
Step 1.3
x-intercept(s) in point form.
x-intercept(s):
x-intercept(s):
Step 2
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Step 2.2.1
Remove parentheses.
Step 2.2.2
Remove parentheses.
Step 2.2.3
Remove parentheses.
Step 2.2.4
Simplify .
Step 2.2.4.1
Simplify each term.
Step 2.2.4.1.1
Raising to any positive power yields .
Step 2.2.4.1.2
Raising to any positive power yields .
Step 2.2.4.1.3
Multiply by .
Step 2.2.4.1.4
Multiply by .
Step 2.2.4.2
Simplify by adding and subtracting.
Step 2.2.4.2.1
Add and .
Step 2.2.4.2.2
Add and .
Step 2.2.4.2.3
Subtract from .
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s):
y-intercept(s):
Step 4